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Abstract
Studying electromagnetic waves in complex media has been an important
research topic due to its useful applications and scientific significance of its
physical performance. Dyadic Green’s functions (DGFs), as a mathematical
kernel or a dielectric medium response, have long been a valuable tool in solving
both source-free and source-incorporated electromagnetic boundary value
problems for electromagnetic scattering, radiation and propagation phenomena.
A complete eigenfunctional expansion of the dyadic Green’s functions for
an unbounded and a planar, arbitrary multilayered gyrotropic chiral media is
formulated in terms of the vector wavefunctions. After a general representation
of Green’s dyadics is obtained, the scattering coefficients of Green’s dyadics are
determined from the boundary conditions at each interface and are expressed in
a greatly compact form of recurrence matrices. In the formulation of Green’s
dyadics and their scattering coefficients, three cases are considered, i.e. the
current source is immersed in (1) the first, (2) the intermediate, and (3) the last
regions, respectively. Although the dyadic Green’s functions for an unbounded
gyroelectric medium has been reported in the literature, we here present not
only unbounded but also multilayered DGFs for the gyrotropic chiral media.
The explicit representation of the DGFs after reduction to the gyroelectric or
isotropic case agrees well with those existing corresponding results.

PACS number: 03.50.De

1. Introduction

Recently, negative refractive (NR) index materials have captured considerable attention in
the research communities of physicists and engineers due to the exotic electromagnetic
properties [1] and potential application in perfect lens [2]. After the negative refraction by the
artificial materials was experimentally verified by Shelby [3], more studies on metamaterials
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have been carried out (e.g., tensor-parameter retrieval using quasi-static Lorentz theory [4],
S-parameter retrieval using the plane wave incidence [5] and constitutive relation retrieval
using transmission line method [6, 7]). These materials may possess backward waves [8, 9],
negative refraction [10, 11], subwavelength focusing [12] and amplification of evanescent
waves [2]. However, the known realizations of metamaterials of a negative refraction index
are based on the use of metal inclusions of different geometries such as complementary split
rings [13], deformed split rings [14] and hexagon rings [15]. Most of the work reported are
conducted in microwave regime, and thus to keep strong magnetic response in optical frequency
becomes a challenge if optical applications are desired. In view of that, chiral media have
been investigated, since the negative refraction can be achieved even if the material has no
magnetic response properties. The backward waves have been studied in chiral nihility [16]
and gyrotropic chiral media [17, 18]. It shows that gyrotropic chiral media provide more
degrees of freedom to realize the negative refraction since the gyro-parameters would greatly
reduce the refractive indices.

Different from the previous work on gyrotropic chiral media, our paper will focus on
the formulation of dyadic Green’s functions (DGFs) of gyrotropic chiral media, which relate
directly the radiated electromagnetic fields and the source distribution. DGFs play an important
role in solving both source-free and source-incorporated boundary value problems and in
characterizing macroscopic performance of multilayered complex media [20, 25–27], and
some special transformations dealing with the scattering and radiation phenomena are also
proposed by Li et al in [28]. Nowadays, the dyadic Green’s function technique has been an
important method employed elsewhere for boundary value problems [29], such as in Method
of Moments and Boundary Element Method. Since 1970s, DGFs in anisotropic media have
been derived [30, 32–34] using (i) the Fourier transform technique, (ii) the method of angular
spectrum expansion, and (iii) the transmission matrix method. However, complete formulation
of the DGFs in various anisotropic media using eigenfunction expansion technique has not
been achieved so far, though the DGFs for isotropic media have been studied quite well in the
last three decades. The technique of Fourier transform looks simpler and is efficient for the
Cartesian coordinates [20]; but it may not be applicable in all the nine fundamental coordinate
systems. The technique of eigenfunctional expansion provides a systematic approach in
electromagnetic theory for interpreting various electromagnetic representations [35]; more
importantly, it is applicable in almost all the fundamental coordinates. Even in the planar
structure considered in detail in this paper, the eigenfunctional expansion technique can
provide an explicit form of the dyadic Green’s functions in cylindrical Bessel functions, so
that it becomes easy and convenient when the source distribution is independent of the azimuth
directions or when far fields are computed.

There have been some results of DGFs for gyroelectric chiral media (only a subset of
gyrotropic chiral media), however most of them are basically valid only for unbounded media
[36, 37] while some of them are not correct, for instance, the results in [38] commented
by Li et al [39]. Since gyrotropic chiral media exhibit potential applications in realization
of negative-refractive media [17], the systematic characterization of such media is of our
particular interest. In this paper, we not only consider the general gyrotropic chiral media but
also take into account multilayered structures. This paper aims at (i) the direct development
of the unbounded dyadic Green’s functions in an unbounded gyrotropic chiral medium
where the eigenfunction expansion technique is employed and mistakes in the existing work
are pointed out; (ii) the formulations of the scattering dyadic Green’s functions and their
coefficients in planarly multilayered gyrotropic chiral media where each layer can be arbitrarily
multiple stratified gyrotropic chiral medium and its results can be reduced to those of the
isotropic or gyroelectric chiral media, and where the source is assumed to have an arbitrary
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three-dimensional distribution and either the transmitter or the receiver can be located in any
region of the layered geometry; and (iii) the derivation of the irrotational part of the dyadic
Green’s functions which were not always provided in existing work. Due to the different
geometries of the multilayered structures, the formulation of the dyadic Green’s functions
differs one from another.

Throughout the paper, a time dependence e−iωt is always suppressed.

2. DGFs for unbounded gyrotropic chiral media

A homogeneous gyrotropic chiral medium can be characterized by a set of constitutive relations

D = ε · E + iξcB,
(1)

H = iξcE + µ−1 · B,

where

ε =
ε −ig 0

ig ε 0
0 0 εz

 ,

(2)

µ =
µ −iw 0

iw µ 0
0 0 µz

 .

We note that gyrotropic chiral material can be reduced to gyroelectric (chiral objects embedded
in a magnetic biased plasma) case or chiroferrite (chiral objects immersed in a magnetic biased
ferrite) case [41]. Experimentally, there might be some problems of simultaneously controlling
the gyro-parameters (i.e., g and w). However, theoretical physics goes ahead often, relative
to the experimental physics. Due to the generalization of the material discussed in this paper,
it is valuable to investigate the DGFs for this material, especially in its multilayered structure.

2.1. General formulation of unbounded DGFs

Substituting (1) into the source-incorporated Maxwell’s equations, we have

∇ × [µ−1 · ∇ × E(r)] − 2ωξc∇ × E(r) − ω2ε · E(r) = iωJ(r′). (3)

Corresponding to the vector wave equation in (3), the following dyadic differential equation
is obtained:

∇ × [µ−1 · ∇ × Ge(r, r′)] − 2ωξc∇ × Ge(r, r′) − ω2ε · Ge(r, r′) = Iδ(r − r′), (4)

where I and δ(r − r′) denote the unit dyadic and Dirac delta function, respectively.
Substituting (3) and (4) into the vector-dyadic Green’s theorem [19] and then applying

the Sommerfeld radiation condition together with vector and tensor manipulations, we have
the following solution to (3) due to the source J(r′) (which can be deduced from Weiglhofer’s
results [40] by assuming magnetic current density to be zero):

E(r) = iω
∫

V ′
Ge(r, r′) · J(r′) dV ′, (5)

where V ′ denotes the volume occupied by the source.
According to the Ohm–Rayleigh method, the source term in (5) can be expanded in terms

of the solenoidal and irrotational cylindrical vector wavefunctions in cylindrical coordinates.
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Thus, we obtain

Iδ(r − r′) =
∫ ∞

0
dλ

∫ ∞

−∞
dh

∞∑
n=−∞

[Mn(h, λ)An(h, λ)

+ N n(h, λ)Bn(h, λ) + Ln(h, λ)Cn(h, λ)], (6)

where vector wavefunctions M ,N and L in cylindrical coordinate system are defined as [19]

M n(h, λ) = ∇ × [�n(h, λ)̂z],

N n(h, λ) = 1

kλ

∇ × Mn(h, λ), (7)

Ln(h, λ) = ∇[�n(h, λ)],

where kλ =
√

λ2 + h2, and the generating function is given by �n(h, λ) = Jn(λρ) ei(nφ+hz).
The coefficients An(h, λ),Bn(h, λ) and Cn(h, λ) in (6) are to be determined from the
orthogonality relationships among the cylindrical vector wavefunctions. Therefore, scalar-dot
multiply both sides of (6) with M−n′(−h′,−λ′),N−n′(−h′,−λ′) and L−n′(−h′,−λ′) each
at a time and integrate them over the whole volume, and we obtain from the orthogonality that

An(h, λ) = 1

4π2λ
M ′

−n(−h,−λ),

Bn(h, λ) = 1

4π2λ
N ′

−n(−h,−λ), (8)

Cn(h, λ) = λ

4π2(λ2 + h2)
L′

−n(−h,−λ).

As is known to all, the dyadic Green’s function can thus be expanded as follows:

G0(r, r′) =
∫ ∞

0
dλ

∫ ∞

−∞
dh

∞∑
n=−∞

[Mn(h, λ)an(h, λ)

+ N n(h, λ)bn(h, λ) + Ln(h, λ)cn(h, λ)], (9)

where the vector expansion coefficients an(h, λ), bn(h, λ) and cn(h, λ) are unknown vector
coefficients to be determined from the orthogonality and permittivity and permeability tensors’
properties.

To obtain these unknown vectors, we substitute (9) and (6) into (5), noting the instinct
properties of the vector wavefunctions

∇ × Nn(h, λ) = kλM n(h, λ),

∇ × M n(h, λ) = kλN n(h, λ), (10)

∇ × Ln(h, λ) = 0.

We can thus obtain∫ ∞

0
dλ

∫ ∞

−∞
dh

∞∑
n=−∞

[M n(h, λ)An(h, λ) + N n(h, λ)Bn(h, λ) + Ln(h, λ)Cn(h, λ)]

=
∫ ∞

0
dλ

∫ ∞

−∞
dh

∞∑
n=−∞

{∇ × [µ−1· kλ(Nn(h, λ)an(h, λ) + Mn(h, λ)bn(h, λ))]

− 2kλωξc[Nn(h, λ)an(h, λ) + Mn(h, λ)bn(h, λ)]

−ω2ε · [M n(h, λ)an(h, λ) + N n(h, λ)bn(h, λ) + Ln(h, λ)cn(h, λ)]}. (11)
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For the compactness of the coming manipulation, we define

α = µ−1 =
αt −αa 0

αa αt 0
0 0 αz

 , (12)

where

αt = µ

µ2 − w2
, αa = −iw

µ2 − w2
, αz = 1

µz

. (13)

By taking respectively the anterior scalar product of (11) with the vector wave equations and
performing the integration over the entire volume, we can formulate the equations satisfied by
the unknown vectors and the known scalar and vector parameters in a matrix form as given by�1

�2

�3

 [X] = [�], (14)

where [�i] denotes ith row in a 3 × 3 matrix

�1 =
[
h2αt + λ2αz − ω2ε,−

(
iω2hg

kλ

+ ikλhαa + 2ωξckλ

)
, iω2g

]
,

�2 =
[
−

(
iω2hg

kλ

+ ikλhαa + 2ωξckλ

)
, k2

λαt − ω2 h2ε + λ2εz

k2
λ

,−ω2 ih

kλ

(εz − ε)

]
, (15)

�3 =
[
−iω2 λ2

k2
λ

g, ω2 ihλ2

k3
λ

(εz − ε),−ω2 h2εz + λ2ε

k2
λ

]
.

[X] and [�] are known column vectors, [X] = [an(h, λ) bn(h, λ) cn(h, λ)]T and [�] =
[An(h, λ)Bn(h, λ)Cn(h, λ)]T . Solving (14), we have the solutions for an(h, λ), bn(h, λ)

and cn(h, λ) as

an(h, λ) = 1



[α1An(h, λ) + β1Bn(h, λ) + γ1Cn(h, λ)] ,

bn(h, λ) = 1



[α2An(h, λ) + β2Bn(h, λ) + γ2Cn(h, λ)] , (16)

cn(h, λ) = 1



[α3An(h, λ) + β3Bn(h, λ) + γ3Cn(h, λ)] ,

where


 = εzαt

(
k2
λ − k2

1

)(
k2
λ − k2

2

)/
αz (17)

and

k2
1,2 = 1

2εzαt/αz

[−pλ ±
√

p2
λ + 4εzαt/αzqλ

]
(18)

with pλ and qλ given respectively below:

pλ = [(αt/αz)
2 + (αa/αz)

2]h2ε − 4ihεξcωαa

/
α2

z

− [4ε(ξc/αz)
2 + εεz/αz]ω

2 + (g2 − ε2)ω2αt

/
α2

z − h2εzαt/αz (19)

qλ = −[(αt/αz)
2 + (αa/αz)

2]h4εz + 4ih2(2hξc + gω)εzωαa

/
α2

z

+
εz

α2
z

[
4h2ξ 2

c + 4ghξcω + (g2 − ε2)ω2 + 2αth
2εεz

]
ω2. (20)
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It should be noted that the coupling coefficients β1, γ1, α2, γ2, α3 and β3 were assumed to
be zero in [38]. Here it is proved that those coupling coefficients must be considered in the
formulation since they are not always zero, and the coupling coefficients α1,2,3, β1,2,3 and γ1,2,3

are given in detail below

α1 = αt

α2
z

(h2εz + λ2ε) − 1

α2
z

ω2εεz, (21)

α2 = β1 = 1

kλα2
z

[ihαa(h
2εz + λ2ε) + 2ξc(h

2εz + ελ2)ω + hgεzω
2], (22)

γ1 = − k2
λ

λ2
α3 = i

α2
z

[
gk2

λαt + ih2αa(ε − εz) + 2hξc(ε − εz)ω − gεzω
2
]
, (23)

γ2 = − k2
λ

λ2
β3

= i

kλ

[
h

(
h2 αt

αz

+ λ2

)
(ε − εz)/αz + ighk2

λαa

/
α2

z

+ 2gξck
2
λω

/
α2

z − h(ε2 − εεz − g2)ω2
/
α2

z

]
, (24)

β2 = 1

k2
λ

[ (
h2 αt

αz

− λ2

)
(h2εz + λ2ε)/αz − (h2εεz + λ2(ε2 − g2))ω2

/
α2

z

]
(25)

γ3 = 1

ω2

{
−k2

λ

(
h2 α2

t + α2
a

α2
z

+ λ2 αt

αz

)
+ 4ihk2

λαaξcω/α2
z

+

[
k2
λεαt +

h2αt + λ2αz

k2
λ

(h2ε + λ2εz) + 2ih2gαa + 4k2
λξ

2
c

]
ω2

/
α2

z

+ 4ghξcω
3
/
α2

z +
1

k2
λ

[h2(g2 − ε2) − λ2εεz]ω
4
/
α2

z

}
. (26)

Hence, the unbounded DGFs in (9) can be rewritten as

G0(r, r′) =
∫ ∞

−∞
dh

∫ ∞

0
dλ

∞∑
n=−∞

1

4π2λ


×
{
M n(h, λ)

[
α1M

′
−n(−h,−λ) + β1N

′
−n(−h,−λ) +

λ2

k2
λ

γ1L
′
−n(−h,−λ)

]
+ Nn(h, λ)

[
β1M−n(−h,−λ) + β2N−n(−h,−λ) +

λ2

k2
λ

γ2L−n(−h,−λ)

]
+

λ2

k2
λ

Ln(h, λ)[−γ1M−n(−h,−λ) − γ2N−n(−h,−λ) + γ3L−n(−h,−λ)]

}
.

(27)

We can further express (9) in a more compact form

G0(r, r′) =
∫ ∞

−∞
dh

∫ ∞

0
dλ

∞∑
n=−∞

1

4π2λ

{τ1Mn(h, λ)M ′

−n(−h,−λ)

+ τ2[Mn(h, λ)N ′
−nt (−h,−λ) + N nt (h, λ)M ′

−n(−h,−λ)]

+ τ3[Mn(h, λ)N ′
−nz(−h,−λ) + Nnz(h, λ)M ′

−n(−h,−λ)]

+ τ4[Nnt (h, λ)N ′
−nz(−h,−λ) + Nnz(h, λ)N ′

−nt (−h,−λ)]

+ τ5Nnt (h, λ)N ′
−nt (−h,−λ) + τ6Nnz(h, λ)N ′

−nz(−h,−λ)}, (28)
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where

τ1 = α1

τ2 = β1 +
iλ2

kλh
γ1

τ3 = β1 − ih

kλ

γ1

τ4 = β2 − ih

kλ

γ2 − ikλ

h
β3 − γ3

τ5 = β2 +
iλ2

kλh
γ2 − ikλ

h
β3 +

λ2

h2
γ3

τ6 = β2 − ih

kλ

γ2 +
ihkλ

λ2
β3 +

h2

λ2
γ3.

(29)

It is worth noting that the following identities have been used in the derivation from (9) to (28)

Ln(h, λ) = Lnt (h, λ) + Lnz(h, λ),

L′
−n(−h,−λ) = L′

−nt (−h,−λ) + L′
−nz(−h,−λ),

N n(h, λ) = N nt (h, λ) + Nnz(h, λ),

N ′
−n(−h,−λ) = N ′

−nt (−h,−λ) + N ′
−nz(−h,−λ),

Lnt (h, λ) = −ikλ

h
N nt (h, λ),

L′
−nt (−h,−λ) = ikλ

h
N ′

−nt (−h,−λ),

Lnz(h, λ) = ihkλ

λ2
Nnz(h, λ),

L′
−nz(−h,−λ) = −ihkλ

λ2
N ′

−nz(−h,−λ),

(30)

where the subscripts t and z denote, respectively, the transverse and the longitude components
of the two functions Ln(h, λ) and N n(h, λ) and similarly for the primed functions.

2.2. Analytical evaluation of the h integral

In order to apply the residue theorem to (28), the part in (28) which does not satisfy the Jordan
lemma is required to be extracted first. By applying the idea of Tai [19] to obtain an exact
expression of the irrotational dyadic Green’s function, we obtain from (6)

ẑ ẑδ(r − r′) =
∫ ∞

0
dλ

∫ ∞

−∞
dh

∞∑
n=−∞

1

4π2λ

k2
λ

λ2
Nnz(h, λ)N ′

−nz(−h,−λ). (31)

Thus the singular term of the unbounded DGF is contained in the N nz(h, λ)N ′
−nz(−h,−λ)

dyadic.
Certainly, the expression of the DGF, as shown above, is a form in a pre-integration

domain. To actually make use of it for practical problems, we need to integrate the DGF in
the pre-integration domain using the contour integration. In this paper, planarly multilayered
structures are considered. As a result, the wave numbers hi can be found by rewriting 
 in
(18) in h-domain and solving the fourth-order polynomial equation. It can be obtained using
the syntax Solve[p hˆ 4+c hˆ 3+q hˆ 2+s h+t = =0, h] in Mathematica5.2 package. However, it
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is too tedious to be shown here. One important point is that 
 = 0 yields four sets of solutions
corresponding to four different waves of wave numbers hi (i = 1, 2, 3 and 4).

After lengthy but careful algebraic manipulation, we rewrite (28)

G0(r, r′)=− αz

ω2εzαt

ẑẑδ(r − r′) +
∫ ∞

−∞
dh

∫ ∞

0
dλ

∞∑
n=−∞

1

4π2λ

{τ1Mn(h, λ)M ′

−n(−h,−λ)

+ τ2[Mn(h, λ)N ′
−nt (−h,−λ) + N nt (h, λ)M ′

−n(−h,−λ)]

+ τ3[Mn(h, λ)N ′
−nz(−h,−λ) + Nnz(h, λ)M ′

−n(−h,−λ)]

+ τ4[Nnt (h, λ)N ′
−nz(−h,−λ) + Nnz(h, λ)N ′

−nt (−h,−λ)]

+ τ5Nnt (h, λ)N ′
−nt (−h,−λ) + τ7Nnz(h, λ)N ′

−nz(−h,−λ)}, (32)

where

τ7 = β2 +
1

ω2
(1 + h2/λ2)

(
k2
λ − k2

1

)(
k2
λ − k2

2

)
+

h

λ2
(ikλβ3 + hγ3) − ih

kλ

γ2. (33)

For z > z′, the DGF is given by

G0(r, r′) = − αz

ω2εzαt

ẑẑδ(r − r′) +
i

2π

∫ ∞

0
dλ

∞∑
n=−∞

αz

εzαtλ(h1 − h2)

×
2∑

j=1

(−1)j+1

(hj − h3)(hj − h4)
{Mn,λ(hj )P

′
−n,−λ(−hj ) + Qn,λ(hj )M

′
−n,−λ(−hj )

+ U n,λ(hj )N
′
−nt,−λ(−hj ) + V n,λ(hj )N

′
−nz,−λ(−hj )}. (34)

For z < z′, the only replacement to be made is

1

λ(h1 − h2)

2∑
j=1

(−1)j+1

(hj − h3)(hj − h4)
�⇒ 1

λ(h3 − h4)

4∑
j=3

(−1)j+1

(h1 − hj )(h2 − hj )
.

The vector wavefunctions P n,λ(hj ),Qn,λ(hj ),U n,λ(hj ) and V n,λ(hj ) in (34), are given
respectively by

P n,λ(hj ) = τ1M n,λ(hj ) + τ2N nt,λ(hj ) + τ3Nnz,λ(hj ),

Qn,λ(hj ) = τ2N nt,λ(hj ) + τ3Nnz,λ(hj ),

Un,λ(hj ) = τ5N nt,λ(hj ) + τ4N nz,λ(hj ),

V n,λ(hj ) = τ4Nnt,λ(hj ) + τ7N nz,λ(hj ).

(35)

The first term of (34) is due to the contribution from the non-solenoidal vector
wavefunctions. For a long time, this term of the DGF expressions was never been obtained in
the publications [43, 44] where the irrotational part of the DGF was all missing. The second
integration term can be evaluated by making use of the residue theorem in h-plane. This term
contributes from the solenoidal vector wavefunctions. After some mathematical manipulations
for simplicity, we arrived at the final representation of the DGFs for an unbounded gyrotropic
chiral medium which is suitable for further analysis of a planar, multilayered structure.

Now, a complete representation of the DGFs for an unbounded gyrotropic chiral medium
has been obtained. It can be seen that a singularity term has been extracted and this general
DGFs are reducible to those of anisotropic, gyroelectric, chiroferrite and isotropic media.
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Figure 1. Geometry of a planarly multilayered Gyrotropic chiral medium.

3. General formulation for stratified, multilayered gyrotropic chiral media

In this section, we extend our theoretical analysis to the multilayered planar structure where
both the number of multiple layers and the location of either the source or the field are arbitrary,
and each layer can be a gyroelectric chiral (permeability is a scalar), a chiroferrite (permittivity
is a scalar), a chiral (permittivity and permeability are both scalar), or just simply an isotropic
medium (ξc = 0, and permittivity and permeability are both scalar). In view of practical
fabrication of such multilayers, the bisoliton theory can be applied in the process [45]. The
permittivity and permeability tensors are given below:

εf =


εf −igf 0

igf εf 0

0 0 ε
f
z

 , µf =

µf −iwf 0

iwf µf 0

0 0 µ
f
z

 , (36)

and correspondingly the matrix αf = [µf ]−1 and the chiral parameter ξcf in the f th layer.
Thus, the relation governing the wave number and eigenvalues can now be rewritten as

k
f

λ =
√

λ2 + (hf )2. (37)

The multilayered structure is shown by figure 1.
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Based on the principle of scattering superposition, we have

G
(f s)

e (r, r′) = G0(r, r′)δs
f + G

(f s)

s (r, r′), (38)

where Ge and G0 denote the total and unbounded electric DGFs, respectively and
superscripts/subscripts f and s denote the field point located at the f th layer and source
located at the sth layer, respectively.

The representation of the scattered DGFs is given by

G
(f s)

s (r, r′) =
4∑

j=1

Gj . (39)

We combine two terms as follows:

G1 + G2 = i

2π

∫ ∞

0
dλ

∞∑
n=0

(2 − δn0)

psλ(h1s − h2s)
×

2∑
j=1

(−1)j+1

(hjs − h3s)(hjs − h4s)

× {(
1 − δN

f

)
M n,λ

(
h

f

j

)[(
1 − δ1

s

)
A

f s

MjP
′−n,−λ

(−hs
j

)
+

(
1 − δN

s

)
B

f s

MjP
′−n,−λ

(−hs
j+2

)]
+

(
1 − δN

f

)
Qn,λ

(
h

f

j

)[(
1 − δ1

s

)
A

f s

QjM
′−n,−λ

(−hs
j

)
+

(
1 − δN

s

)
B

f s

QjM
′−n,−λ

(−hs
j+2

)]
+

(
1 − δN

f

)
Un,λ

(
h

f

j

)[(
1 − δ1

s

)
A

f s

UjN
′−nt,−λ

(−hs
j

)
+

(
1 − δN

s

)
B

f s

UjN
′−nt,−λ

(−hs
j+2

)]
+

(
1 − δN

f

)
V n,λ

(
h

f

j

)[(
1 − δ1

s

)
A

f s

VjN
′−nz,−λ

(−hs
j

)
+

(
1 − δN

s

)
B

f s

Vj N
′−nz,−λ

(−hs
j+2

)]}
,

(40)

and

G3 + G4 = i

2π

∫ ∞

0
dλ

∞∑
n=0

(2 − δn0)

psλ(h3s − h4s)
×

4∑
j=3

(−1)j+1

(h1s − hjs)(h2s − hjs)

× {(
1 − δN

f

)
M n,λ

(
h

f

j

)[(
1 − δ1

s

)
A

f s

MjP
′−n,−λ

(−hs
j−2

)
+

(
1 − δN

s

)
B

f s

MjP
′−n,−λ

(−hs
j

)]
+

(
1 − δN

f

)
Qn,λ

(
h

f

j

)[(
1 − δ1

s

)
A

f s

QjM
′−n,−λ

(−hs
j−2

)
+

(
1 − δN

s

)
B

f s

QjM
′−n,−λ

(−hs
j

)]
+

(
1 − δN

f

)
Un,λ

(
h

f

j

)[(
1 − δ1

s

)
A

f s

UjN
′−nt,−λ

(−hs
j−2

)
+

(
1 − δN

s

)
B

f s

UjN
′−nt,−λ

(−hs
j

)]
+

(
1 − δN

f

)
V n,λ

(
h

f

j

)[(
1 − δ1

s

)
A

f s

VjN
′−nz,−λ

(−hs
j−2

)
+

(
1 − δN

s

)
B

f s

Vj N
′−nz,−λ

(−hs
j

)]}
.

(41)

The combination of the two terms for the above two equations is due to the fact that each term
has a static contribution to the dyadic Green’s function because of the integration associated
with the pole point λ = 0. What should be noted is that the multiple reflection and transmission
effects have been included in the formulation of the scattering DGFs. The Sommerfeld
radiation condition has been taken into account in the construction of DGFs. The contributions
from various wave modes to the DGFs have been considered as well.

4. Coefficients of the scattering DGFs: boundary condition method

The boundary conditions that must be satisfied by the dyadic Greens’ function at the interface
between regions f and f + 1 where z = zj = ∑N−2

l=f Hl are shown as follows:

ẑ × G
(f s)

e (r, r′) = ẑ × G
[(f +1)s]
e (r, r′),

ẑ × [
αf · ∇ × G

(f s)

e (r, r′) − ωξcf G
(f s)

e (r, r′)
]

= ẑ × [
αf +1 · ∇ × G

[(f +1)s]
e (r, r′) − ωξc(f +1)G

[(f +1)s]
e (r, r′)

]
. (42)
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To simplify the derivation of the general solution of the coefficients, we rewrite the
boundary conditions (42) into the following matrix form. Now, it is clear that the equations
obtained here for the layered gyrotropic chiral medium are different from those in all previous
work.

Besides, it should be pointed out that some relationships between the vectors
N n,λ(h),M n,λ(h) and the matrix α have the following form:

α · N n,λ(h) = − ih

kλ

αaM n,λ(h) + αtNnt,λ(h) + αzN nz,λ(h), (43)

α · M n,λ(h) = αtM n,λ(h) − ikλ

h
αaN nt,λ(h) +

ih

kλ

αaN nz,λ(h), (44)

which will be used in the implementation of (42).
We should also note that some terms such as ∇ × Q will be generated when applying the

boundary condition, hence we give the forms of ∇ × Q,∇ × U and ∇ × V as follows:

∇ × Qn,λ(h) = h2(τ2 − τ3) + k2
λτ3

kλ

Mn,λ(h), (45)

∇ × Un,λ(h) = h2(τ5 − τ4) + k2
λτ4

kλ

Mn,λ(h), (46)

∇ × V n,λ(h) = h2(τ4 − τ7) + k2
λτ7

kλ

M n,λ(h). (47)

4.1. Recurrence matrix of DGFs’ scattering coefficients

By using the boundary conditions, a set of linear equations of the coefficients which can be
represented by a series of compact matrices is given below:

[Flj ′(f +1)] · {
[ϒlj ′(f +1)s] + δs

f +1[U(f +1)]
} = [Flj ′f ] · {

[ϒlj ′f s] + δs
f [Df ]

}
(48)

where j ′ = 1, 2 and l denotes M,Q,U and V , respectively. These matrices are given by

[FM1f ] =


eih1f zf

(h1s − h2s)(h1s − h4s)

eih3f zf

(h3s − h4s)(h2s − h3s)

[h1f αtf − (ωξcf + ih1f αaf )] eih1f zf

(h1s − h2s)(h1s − h4s)

[h3f αtf − (ωξcf + ih3f αaf )] eih3f zf

(h3s − h4s)(h2s − h3s)

 , (49)

[FQ1f ] =


h1f τ21f eih1f zf

kλ1f (h1s − h2s)(h1s − h4s)

h3f τ23f eih3f zf

kλ3f (h3s − h4s)(h2s − h3s)[
(τ21f − τ31f )(αtf − αaf )h2

1f + τ31f (αtf − αaf )k2
λ1f − τ21f ωξcf h1f

]
eih1f zf

kλ1f (h1s − h2s)(h1s − h4s)[
(τ23f − τ33f )(αtf − αaf )h2

3f + τ33f (αtf − αaf )k2
λ3f − τ23f ωξcf h3f

]
eih3f zf

kλ3f (h3s − h4s)(h2s − h3s)


T

(50)
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[FU1f ] =


h1f τ51f eih1f zf

kλ1f (h1s − h2s)(h1s − h4s)

h3f τ53f eih3f zf

kλ3f (h3s − h4s)(h2s − h3s)[
(τ51f − τ41f )(αtf − αaf )h2

1f + τ41f (αtf − αaf )k2
λ1f − τ51f ωξcf h1f

]
eih1f zf

kλ1f (h1s − h2s)(h1s − h4s)[
(τ53f − τ43f )(αtf − αaf )h2

3f + τ43f (αtf − αaf )k2
λ3f − τ53f ωξcf h3f

]
eih3f zf

kλ3f (h3s − h4s)(h2s − h3s)


T

(51)

[FV 1f ] =


h1f τ41f eih1f zf

kλ1f (h1s − h2s)(h1s − h4s)

h3f τ43f eih3f zf

kλ3f (h3s − h4s)(h2s − h3s)[
(τ41f − τ71f )(αtf − αaf )h2

1f + τ71f (αtf − αaf )k2
λ1f − τ41f ωξcf h1f

]
eih1f zf

kλ1f (h1s − h2s)(h1s − h4s)[
(τ43f − τ73f )(αtf − αaf )h2

3f + τ73f (αtf − αaf )k2
λ3f − τ43f ωξcf h3f

]
eih3f zf

kλ3f (h3s − h4s)(h2s − h3s)


T

,

(52)

where the superscript T denotes the transpose of the matrices.
The matrices [Flj ′f ] remain the same form for j ′ = 2 except the subscript 1 is changed to

2 and the subscript 3 is changed to 4. Furthermore, the denominator which contains the term
(h1s − h4s) is changed to (h2s − h3s) and vice versa. The terms τ2jf , τ3jf , τ4jf , τ5jf and τ7jf

are the weighting factors associated with the scattering coefficients A
f s

lj and B
f s

lj . They have
the same forms as those in (29) and (33) only with the change that each term relating to wave
numbers (e.g., h) will have a subscript of jf (e.g., hjf ) and each term relating to material
parameters (e.g., ξc) will have a subscript of f (e.g., ξcf ) where j = 1, 2 and f represents the
f th layer.

The following matrices are also used in the formulation:

[ϒlj ′f s] =
[

A
f s

lj ′ B
f s

lj ′

A
f s

l,j ′+2 B
f s

l,j ′+2

]
, (53)

[Uf ] =
[

1 0
0 0

]
, (54)

[Df ] =
[

0 0
0 1

]
. (55)

Defining the following transmission T-matrix:

[Tlj ′f ] = [Flj ′(f +1)f ]−1 · [Flj ′ff ], (56)

where [Flj ′(f +1)f ]−1 is the inverse matrix of [Flj ′(f +1)f ], we can thus rewrite the linear equation
into the following form:

[ϒlj ′(f +1)s] = [Tlj ′f ] · {
[ϒlj ′f s] + δs

f [Df ]
} − δs

f +1[U(f +1)]. (57)
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To shorten the expression, we also introduce[
T K

lj ′
]

2×2 = [Tlj ′,N−1][Tlj ′,N−2] · · · [Tlj ′,K+1][Tlj ′,K ]

=
[
T K

lj ′,11 T K
lj ′,12

T K
lj ′,21 T K

lj ′,22

]
. (58)

Note that the coefficients matrices of the first and the last layers have the following relations:

[ϒlj ′1s] =
[
A1s

lj ′ B1s
lj ′

0 0

]
, [ϒlj ′Ns] =

[
0 0

ANs
l,j ′+2 BNs

l,j ′+2

]
. (59)

4.2. Specific applications: three cases

To gain insight into the specific mathematical expressions of the physical quantities such as
the transmission and reflections coefficient matrices, the following three cases are specifically
considered where the source point is located in the first, the intermediate and the last layers.

4.2.1. Source in the first layer. When the current source is located in the first layer (i.e.,
s = 1), the terms containing

(
1 − δ1

s

)
in (40) and (41) vanish. The coefficient matrices in (53)

and (59) will be further reduced to

[ϒlj ′,11] =
[

0 B11
lj ′

0 0

]
,

[ϒlj ′,m1] =
[

0 Bm1
lj ′

0 Bm1
l,j ′+2

]
, (60)

[ϒlj ′,N1] =
[

0 0

0 BN1
l,j ′+2

]
,

where m = 2, 3, . . . , N −1. It can be seen that only four coefficients for the first layer and the
last layer, but 8 coefficients for each of the remaining layers, need to be solved. By following
(57), the recurrence relation in the f th layer becomes

[ϒlj ′,f 1] = [Tlj ′,f −1] · · · [Tlj ′,1]{[ϒlj ′,11] + [D1]}. (61)

With f = N in (61), a matrix equation satisfied by the coefficient matrices in (60) can be
obtained. The coefficient for the first layer where the source is (i.e. s = 1) is given by

B11
lj ′ = −T

(1)
lj ′,12

T
(1)
lj ′,11

. (62)

The coefficient for the last layer can be derived in terms of the coefficients for the first layer
given by

BN1
l,j ′+2 = T

(1)
lj ′,21B

11
lj ′ + T

(1)
lj ′,22. (63)

The coefficients for the intermediate layers can be then obtained by substituting the coefficients
for the first layer in (62) to (61). Thus, all the coefficients can be obtained by these procedures.
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4.2.2. Source in the intermediate layers. When the current source is located in an intermediate
layer, (i.e. s �= 1, N), only the terms containing

(
1 − δ1

f

)
for the first layer and

(
1 − δN

f

)
for

the last layer vanish in (40) and (41). The coefficient matrices in (53) and (59) will be further
simplified:

[ϒlj ′,1s] =
[
A1s

lj ′ B1s
lj ′

0 0

]
,

[ϒlj ′,ms] =
[

Ams
lj ′ Bms

lj ′

Ams
l,j ′+2 Bms

l,j ′+2

]
, (64)

[ϒlj ′,Ns] =
[

0 0
ANs

l,j ′+2 BNs
l,j ′+2

]
.

From (57), the recurrence equation becomes

[ϒlj ′,f s] = [Tlj ′,f −1] · · · [Tlj ′,s] · {[Tlj ′,s−1] · · · [Tlj ′,1][ϒlj ′,1s]

+ u(f − s − 1)[Ds] − u(f − s)[Us]}, (65)

where u(x − x0) is the unit step function. For f = N , the coefficients for the first layer are
given by

A1s
lj ′ = T

(s)
lj ′,11

T
(1)
lj ′,11

,

B1s
lj ′ = −T

(s)
lj ′,12

T
(1)
lj ′,11

.

(66)

For the last layer,

ANs
l,j ′+2 = T

(1)
lj ′,21A

1s
lj ′ − T

(s)
lj ′,21,

BNs
l,j ′+2 = T

(1)
lj ′,21B

1s
lj ′ + T

(s)
lj ′,22.

(67)

Substituting (66) into (65), the rest of the coefficients can be obtained for the dyadic Green’s
functions.

4.2.3. Source in the last layer. When the current source is located in the first layer (i.e.,
s = N ), the coefficients are

[ϒlj ′,1N ] =
[
A1N

lj ′ 0

0 0

]
, (68)

[ϒlj ′,mN ] =
[

AmN
lj ′ 0

AmN
l,j ′+2 0

]
, (69)

[ϒlj ′,NN ] =
[

0 0

ANN
l,j ′+2 0

]
. (70)

From the recurrence equation (57), similarly we have

[ϒlj ′,f N ] = [Tlj ′,f −1] · · · [Tlj ′,1][ϒlj ′,1N ] − u(f − N)[UN ]. (71)

By letting f = N , the coefficient for the first region is

A1N
lj ′ = 1

T
(1)
lj ′,11

. (72)
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And for the last layer, it is found that

ANN
l,j ′+2 = T

(1)
lj ′,21A

1N
lj ′ . (73)

Similarly, the rest of the coefficients can be obtained by inserting (73) into (71).
So far, for gyrotropic chiral media in planarly multilayered structure, We have obtained a

complete set of the DGFs in terms of the cylindrical vector wavefunctions and their scattering
coefficients in terms of compact matrices. Reduction can be made for formulating the dyadic
Green’s functions in a less complex medium of specific planar geometries, e.g., an anisotropic
medium where ξc = 0, a chiral medium where g = w = 0, ε = εz and µ = µz, a gyroelectric
medium where w = 0 and µ = µz, a chiroferrite medium where p = 0 and ε = εz, an
isotropic medium where ξc = g = w = 0, εz = ε and µ = µz. When the source distribution
is given, the electric field can be computed by (4), in which the local parameters of the source,
the stratified layers and the materials in each layer have been taken into account systematically.

5. Conclusion

Gyrotropic chiral media, which can achieve negative refraction far off the resonances of the
permittivity and permeability, provide us a promising alternative approach to realize negative-
refractive media for optical applications. In this paper, systematic response of gyrotropic chiral
media has been studied in terms of the dyadic Green’s functions. A complete eigenfunctional
expansion of the DGFs for an unbounded gyrotropic chiral medium and stratified multilayered
gyrotropic chiral media is constructed. The unbounded DGFs in the gyrotropic chiral medium
are obtained using the Ohm–Raleigh method, and the scattered dyadics are then proposed using
the principles of scattering superposition for a multilayered structure as well as the multiple
transmission and reflection associated with each interface. The scattering coefficients of the
DGFs are presented in compact matrices by applying the boundary conditions at each interface.
The current form of DGFs for gyrotropic chiral media includes the irrotational dyadic, which
has been extracted in this paper. It is worth pointing out that (1) the general DGFs for the
planarly multilayered gyrotropic chiral media can be reduced to those DGFs for less complex
media as expected and mentioned before, such as chiral media, anisotropic media, gyroelectric
media, chiroferrite media and isotropic media; (2) various wave modes containing different
wave numbers h1, h2, h3 and h4 are observed during the formulation of the DGFs; and (3) thus,
the DGFs can be decomposed using the modes mentioned above. Application of the present
work can be made to problems of propagation and scattering and dipole antenna radiation in
the planarly multilayered gyrotropic chiral media.
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